Category Archives: Green Mantle

compost making at The Oak Tree and sensor network design

Using the microscope to grade compost and compost extract

This is using Elaine Ingham’s microscopy techniques to investigate thermal compost – some of what I saw. I am at an early stage of being able to do this, so any errors are mine and not Elaine Ingham’s 😉 The principle is to classify organisms by their morphology – aerobic fungi tend to have a colour, diameter wider than 2.5µm and/or have uniform septa. Spiral structures are bad, indiciative of anaerobic conditions, and ciliates (hairs all over the body) also indicate anaerobic – bad- conditions. Apart form the spirochete most of these are good.

This is on a 5x dilution, the recommended intial conditions (use 1ml of compost and make up to 5ml total with water left to stand so the chlorine has gone).

Making Compost Extract

The easiest and low-tech way of adding the microorganisms from compost is to extract them fro mthe compost using water and a mesh, then spray the water  – in our case using watering cans. You can spread the compost itself, and there’s much to be said for that, but it’s more stuff to wrangle and needs to happen before you plant, ideally. Since we are going to test areas on already growing plants, extract it is. Compost tea is a way of getting more microbes out there, but it is technically harder and we don’t have the gear. Extract it is, then. The rate seems to be about a good handful per 5 gallons, we used half an IBC, ie about 500 liters, which is 110 gallons. So we need about 20 times as much

Start with a wodge of compost in a net curtain

Start with a wodge of compost in a net curtain

and some reasonably clean borehole water (so no worries on chlorine or chloramine)

and 500 litres reasonably clean borehole water (so no worries on chlorine or chloramine)

We made a bag by putting the compost in the middle of the net curtain material and tying up the top with a releasable cable tie.

You can see the brown of the humic acid leaching out of the compost into the water

You can see the brown of the humic acid leaching out of the compost into the water

the end result is a dark brown chocolate colour

the end result is a dark brown chocolate colour

Continue reading

using the microscope with the finished compost

The successful compost is ready – it has now fallen to roughly ambient temperature.

1507_otl_AS_fourweeklyunfortunately the temperature logger failed when I was on holiday so I don’t know what the profile was as it cooled down. And yes, it didn’t spend three times three days above 55C – more like three days and two days. There’s still more to learn here.

Time to look at this and see what sort of microbial stuff is in it. I shook this up with about 20 times the amount of water and put a drop on a slide

fungal hypah and bacteria

fungal hypha and bacteria

According to Elaine Ingham’s rules of thumb this is probably a good sort of soil fungus, because if the little round cocci are 1µm in diameter the fungal hypha is about 4µm. I could see that this one was slightly tan coloured, but the incandescent lamp of the microscope plays havoc with the white balance of the camera, making everything bright yellow.

1507_hypha_DSCN2669_lznThis next one is narrow and clear, so not good in the morphology  rule of thumb that fungi < 3µm in diameter and clear are undesirable soil fungi.

I saw no protozoa or micro-arthropods. That’s either because there aren’t any or because I didn’t recognise them. The dilution is high, – it appears that Ingham starts at 5:1 so I’m four times less likely to see these at 20:1.

 

concentrated compost activators are hard to use

The high-nitrogen activator should typically be about 10% of the composting materials. These are typically animal wastes – I have used real chicken crap, pelletised chicken crap, and clover. With the chicken manure each time I have scored a fail, whereas the clover was a success.

pelleted chicken manure

pelleted chicken manure

I suspect the trouble is that it’s hard to mix a concentrated activator properly. For starters it’s not pleasant to do, which discourages it being turned in right. The pelletised stuff is easy to distribute evenly, but even then it seems to lead to localised action.

pellets seem to turn white

pellets seem to turn white

The pellets seem to go white, like dog crap used to go white when left on the footpath in the 1970s. This leads to a fast and furious burn on the composting front, but with no staying power

pelletised chicken crap - leading to a fast ramp up but no staying power

pelletised chicken crap – leading to a fast ramp up but no staying power – the dip was when it was turned

The clover was more evenly spread – somehow I need to find a way of spreading the others more evenly. Or maybe go for the urine, preferably from carnivorous humans (there is more N in protein). In Ben Easey’s Practical Organic Gardening (Faber, 1955) he says dilute this with water 1:20 which should make for a better distribution. So I’m going to steer clear of using crap, because I am a wuss and don’t like dealing with it and it’s too concentrated anyway. Clover or urine will be my activators of choice 😉

Composting win

If at first you don’t succeed, try again 🙂 The requirements of Elaine Ingham’s thermal composting are quite demanding, keeping the heap at over 55C for more than three days to kill weed seeds and pathogens. The previous attempt got really close then seemed to dry out, this appears to be a issue with using a lot of woodchip which is a difficult material to wet. This time I used less of it.

more green material with this heap

more green material with this heap

I used a higher proportion of green material, and more of the high nitrogen clover too. I filled the wheelbarrows with woodchip and then added water until it overflowed, then left it to soak overnight

this achieved over 55C for three days - the dip is when this was turned

this achieved over 55C for three days – the dip is when this was turned on Thursday evening

After it had been over 55C for three days I turned this heap, wetting the material as it was turned over. I should be able to turn this again on Monday, assuming it holds above 55C

Composting – take two

Time to put some of the learning from the last time into practice, with thanks to Polly for help with wrangling the materials –

Raw materials

Raw materials

The clover which it the high-nitrogen component because it fixes N from the air is on the black plastic. Loads of wood chip is in the bin and the wheelbarrow. First we put sticks in the bottom to improve airflow because the whole point of thermal compost is to keep things aerobic

base of sticks to improve airflow

base of sticks to improve airflow

We needed to wet the material. In the video tutorials Ingham recommends standing the material in water overnight. We wetted is using a fine spray on the hose

Lucia and Polly soaking the woodchip

Lucia and Polly soaking the woodchip

A heck of a lot of material goes into a compost pile – thanks to Polly and Lucia who helped at the working party Continue reading

Nitrogen Fixing Clover Nodules

We have a lot of clover, which as Cotswold Seeds describe, are plants that fix nitrogen from the air in combination with Rhizobium bacteria living in root nodules. Since I’m going to use this for the high Nitrogen component instead of chicken crap I wanted to see if there were any active root nodules – after all if there were no bacteria or we had used nitrogen fertiliser there would be no nodules.

Clover root nodules

Clover root nodules

The good news is there are root nodules – so the clover is ready to fix nitrogen. The first  sample nodules have no red in them, even when dissected, which seems to mean they weren’t actually fixing nitrogen. This only starts when the soil temperature is above 8C. However, taking a second sample from the same patch showed better results.

opened nitrogen fixing root nodule

opened nitrogen fixing root nodule shows a distinct red colour

Looks like with these you have to open the nodules to see the red colour of leghemoglobin , they’re not particularly pink from the outside. Leghemoglobin transports the nitrogen to the plant from the nitrogen fixing bacteria.