Tag Archives: temperature

AM2302 (DHT22 ) Temp Humidity sensor and JAL on a 16F628 at 4MHz clock

Having decided I can’t be bothered with digital sensors with oddball serial interfaces like the DHT22 it was time to suck it up when I needed a number of sensors. Cost adds up with lots of sensors – though that Honeywell product more than paid for itself a few times over in much better hatch rates (fertile eggs are about £2 a pop by post, that’s how much of a loss you eat for every failure to hatch!) not every sensor application affects the bottom line like that. Sometimes low cost trumps accuracy, reliability and serviceability. Enter the AM2302, apparently a.k.a. DHT22, produced by the fine Aosong corporation. Their website looks like line noise on my browser, but apparently they are based in Guangzhou, which is China’s third largest city, a conurbation of nearly thirteen million souls.

AM2302, humidity and temperature sensor, a.k.a. DHT22 apparently

AM2302, humidity and temperature sensor, a.k.a. DHT22 apparently

The sensors are cheap, nasty and have poor accuracy, but the price is right, it’s the cheapest way to get a humidity and temperature sensor. Five for £17.70 or a unit price of £3.54 from a Chinese supplier on ebay, Buyincoins ISTR. They have a non-standard one-wire interface. That requires you to be able to tell a 30μS high duration from a 68μS high duration. No problem, eh, even with a PIC running on the internal 4MHz oscillator so each clock cycle is 1μS?

There was already a JAL library for this, called temperature_humidity_dht11.jal so I am in development heaven.

Except it doesn’t work – it acts up after about 20s in the video. It sort of works some times, tantalising short runs of OK in amongst loads of timeout errors. I fiddle with the power supply a little as the AM2302 is claimed to be finicky on the need for 5V. No luck. Tracing the library code I find it barfs around

Continue reading

Humidity and Temperature sensor on Cosm IoT

The trouble with geese is that they are waterfowl, ie used to hatching near water, unlike chickens, so you tend to have to control the humidity of the incubator as well as the temperature. Humidity is terribly counterintuitive – unlike temperature humans have no real sense for it. So I was looking at how to make a humidity and temperature sensor.

Goslings

Goslings. Like most animals, geese don’t look so mean when young

The problem starts with our cheap Chinese import incubator. There’s no real calibration on the temperature dial, and you know it’s a bad sign when the manual tells you ‘when your small poultry is ready’. I was really sceptical about how well this would stabilise the temperature. Quite unfairly as it happens. Continue reading

Remote sensing and the Internet of Things

Wires. That’s the problem with remote sensing, at least it has been until recently. You needed wire to get the signal back to where you wanted to view it, and often to power your sensor too. That’s a grand PITA. The last time I looked at this, about a decade ago, you could get little RF modules running at around 433MHz but these presented the raw demodulated FM signal. Great for voice but you then needed a modem to wrap around the project. And some sort of protocol stack, possibly.

That exchanged the signal wiring problem for a sensor powering issue, and these radio modules were send or receive so everything would end up fire and forget.

I was chuffed to find there’s been a lot of movement in this field. A lot of it seems Arduino based and I selected PICs when getting into micros, so it is a new learning curve. In researching this I came across JeeLabs and Ciseco. The latter had some £12 bidirectional RF to serial cards, the XRF, which I expected to attach a PIC. However, they seeme ot also have used the microcontroller on the RF board to do some signal conditioning for a few sensors, including temperature via the Dallas 18B20 or a thermistor. Since temperature and battery voltage/contact status are some of the things I want to remote sense that saves me a load of programming grunt-work.

They have also documented a simple serial sensor protocol, LLAP, which fitted my needs. The Internet of Things is all very well but if you need a TCP/IP stack for each battery powered node you need a lot of processing power and electrical power, which is back to wiring again.

So I ordered four XRF boards, a couple of thermistor boards and a XBBO carrier board to interface to an FTDI cable to USB. Assembling the thermistor boards and the XBBO were easy enough, now it was time to test it all out and getting some readings. To do that you have to set your LLAP sensor device to some particular address. and this is where is started getting hard. You have to program them over the air, and you have 100ms to respond to the started command.

Ciseco XBBO board for LLAP devices

That’s great for security, but I don’t type that fast 🙂 Which is why I use this script to do that job.